A metal-organic cage incorporating multiple light harvesting and catalytic centres for photochemical hydrogen production

نویسندگان

  • Sha Chen
  • Kang Li
  • Fang Zhao
  • Lei Zhang
  • Mei Pan
  • Yan-Zhong Fan
  • Jing Guo
  • Jianying Shi
  • Cheng-Yong Su
چکیده

Photocatalytic water splitting is a natural but challenging chemical way of harnessing renewable solar power to generate clean hydrogen energy. Here we report a potential hydrogen-evolving photochemical molecular device based on a self-assembled ruthenium-palladium heterometallic coordination cage, incorporating multiple photo- and catalytic metal centres. The photophysical properties are investigated by absorption/emission spectroscopy, electrochemical measurements and preliminary DFT calculations and the stepwise electron transfer processes from ruthenium-photocentres to catalytic palladium-centres is probed by ultrafast transient absorption spectroscopy. The photocatalytic hydrogen production assessments reveal an initial reaction rate of 380 μmol h-1 and a turnover number of 635 after 48 h. The efficient hydrogen production may derive from the directional electron transfers through multiple channels owing to proper organization of the photo- and catalytic multi-units within the octahedral cage, which may open a new door to design photochemical molecular devices with well-organized metallosupramolecules for homogenous photocatalytic applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photochemical Hydrogen Production with Metal–Organic Frameworks

Metal–Organic Frameworks (MOFs) have attracted increasing attention for the creation of solid-state platforms for catalysis applications. In this review article, we present strategies to employ MOF-based materials in photochemical hydrogen production. The scope ranges from the incorporation of single functions (catalyst or photosensitizer) to multifunctional MOFs that combine both light-harvest...

متن کامل

Stabilisation effects of phosphane ligands in the homogeneous approach of sunlight induced hydrogen production.

Most of the systems for photochemical hydrogen production are not stable and suffer from decomposition. With bis(bidentate) tetraphosphane ligands the stability increases enormously, up to more than 1000 h. This stability was achieved with a system containing osmium(ii) as a light harvesting antenna and palladium(ii) as a water reduction catalyst connected with a bis(bidentate) phosphane ligand...

متن کامل

Enhanced Photochemical Hydrogen Production by a Molecular Diiron Catalyst Incorporated into a Metal–Organic Framework

A molecular proton reduction catalyst [FeFe](dcbdt)(CO)6 (1, dcbdt = 1,4-dicarboxylbenzene-2,3-dithiolate) with structural similarities to [FeFe]-hydrogenase active sites has been incorporated into a highly robust Zr(IV)-based metal-organic framework (MOF) by postsynthetic exchange (PSE). The PSE protocol is crucial as direct solvothermal synthesis fails to produce the functionalized MOF. The m...

متن کامل

Hydrogen rich gas production via nano-catalytic gasification of bagasse in supercritical water

Ru/Al2O3 nano-catalysts were prepared with impregnation and microemulsion techniques. The supercritical water gasification reaction was performed at 400oC and 5-60 min. Within the tested operation conditions, the reaction residence time of 15 min was the optimum to maximize the H2 yield. It was observed that using microemulsion technique increases the total gas yield significantly. Using microe...

متن کامل

Synthesis of Tryptanthrins by Organocatalytic and Substrate Co-catalyzed Photochemical Condensation of Indoles and Anthranilic Acids with Visible Light and O2.

A metal-free catalytic approach to tryptanthrins has been achieved for the first time. The unique process is realized by an organocatalytic and indole and anthranilic acid substrate co-catalyzed photochemical oxidative condensation with visible light and O2. The truly environmentally friendly reaction conditions enable various reactants to participate in the process to deliver structurally dive...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016